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Abstract
Let i∂/ be the Dirac operator on a D = 2d dimensional ball B with radius R. We
calculate the spectral asymmetry η(0, i∂/) for D = 2 and D = 4, when local
chiral bag boundary conditions are imposed. With these boundary conditions,
we also analyse the small-t asymptotics of the heat trace Tr

(
FP e−tP 2)

where
P is an operator of Dirac type and F is an auxiliary smooth smearing function.

PACS numbers: 02.40.Vh, 03.70.+k

1. Introduction

Local boundary conditions of chiral bag type for Euclidean Dirac operators have attracted,
over many years, the interest of both mathematicians and physicists.

From the physical point of view, such conditions are closely related to those appearing
in the effective models of quark confinement known as chiral bag models [1]. They contain
a real parameter θ , which is to be interpreted as the analytic continuation of the well-known
θ -parameter in gauge theories. Indeed, for θ �= 0, the effective actions for Dirac fermions
contain a CP -breaking term proportional to θ and proportional to the instanton number [2, 3].
Moreover, these boundary conditions can be applied to one-loop quantum cosmology [4, 5],
supergravity theories [6] and branes [7] and are important in the investigation of conformal
anomalies [8]. Applications to finite temperature problems were studied in [3, 9, 10].

From a mathematical point of view, as shown in [3], Euclidean Dirac operators under local
boundary conditions of chiral type define self-adjoint boundary problems. More recently, it
has been shown [12] that both the first-order boundary value problem and its associated
second-order one are strongly elliptic. The asymptotics of the smeared trace of the heat kernel
was studied, for the second-order problem on general Riemannian manifolds with boundary,
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in [11], where use was made of functorial methods [13–15] and special case calculations
presented in [12, 16]; in this context see also [17].

The main characteristic of these boundary conditions, as compared to nonlocal or Atiyah–
Patodi–Singer [18] ones, is the explicit breaking of chiral symmetry. Since the Dirac operator
has no zero modes this breaking comes only from the excited modes. Since the asymmetry is
encoded in the corresponding eta function, the study of this function is of central importance,
physical applications for example arising in the analysis of fermion number fractionization in
different field theory models [19–22].

A recent step forward in the analysis of the eta function is [17], where the eta function
associated with the boundary value problem was shown to be regular at s = 0, and where some
properties of the asymptotic coefficients in the trace of the smeared kernel corresponding to
the eta function were obtained.

In the present paper, we evaluate the spectral asymmetry for Dirac operators on the ball in
two and four Euclidean dimensions, with their domain defined by local boundary conditions
of chiral bag type. Moreover, making use of these results, and the corresponding ones
for cylindrical manifolds obtained in [12, 23] we determine some properties of the leading
asymptotic coefficients in the trace of the smeared kernel corresponding to the eta function,
for arbitrary Riemannian manifolds.

The outline of the paper is as follows: in section 2 we present a new method, based on
group theory, to obtain the spectrum of the boundary value problem under study. Section 3
presents an integral formula for the spectral asymmetry of the Euclidean Dirac operator in
a ball of arbitrary even dimension. Section 4 is devoted to the explicit calculation of the
asymmetry on a disk, while the spectral asymmetry in the four-dimensional case is evaluated
in section 5. In section 6, the leading coefficients in the heat trace associated with the eta
function are established through functorial methods, and the use of special cases. Finally,
section 7 presents a summary of our results. To be self-contained, the appendix contains a
derivation of the Debye expansion of the Bessel functions.

2. Eigenvalue problem for the Dirac operator

Although the eigenvalue equations for the problem at hand were derived before [16, 24], we
present here a different derivation, based on group theory. We write the free Euclidean Dirac
operator (i.e. gauge fields are absent) as

i∂/ = i
D∑

A=1

γ A ∂

∂xA

= iγ A∂A, (1)

where we used the Einstein summation convention for the index A = 1, . . . , D, and the
Dirac-matrices fulfil the Clifford algebra

{γA, γB} = 2δAB. (2)

We have to choose boundary conditions for the spinors �, such that the Dirac operator is
Hermitian and in the following we will consider chiral-bag boundary conditions. Given the
projection operators

�∓ = 1
2 (11 ∓ iγ∗ eγ∗θS) (3)

with free parameter θ and

γ∗ = (−i)dγ1 · · · γD, S = γ AxA/r, r =
√

xAxA, (4)

these boundary conditions are defined as

�−�|∂B = 0. (5)
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In particular, S is the projection of γ A onto the outward unit normal vector. In contrast
to Atiyah–Patodi–Singer boundary conditions, the chiral-bag boundary conditions are local.
One can further show that, for simply connected boundaries, these boundary conditions do
not allow for zero modes. Further details can be found in [3].

P and �− commute with the total angular momentum

JAB = LAB + �AB, LAB = −i(xA∂B − xB∂A), �AB = 1

4i
[γA, γB]. (6)

Using the algebraic approach developed in [25], we can first diagonalize the total angular
momentum, i.e. determine the spin spherical harmonics by group theoretical methods. Our
aim is to construct the highest weight states. These states are eigenstates of the Cartan operators
of the so(D)-algebra and are annihilated by the corresponding raising operators. The remaining
states in each multiplet can be obtained by applying lowering operators on these highest weight
states. It is appropriate to introduce complex coordinates and creation/annihilation operators
as follows,

za = x2a−1 + ix2a, ∂a = 1
2

(
∂x2a−1 − i∂x2a

)
,

ψ †
a = 1

2 (γ2a−1 + iγ2a), ψa = 1
2 (γ2a−1 − iγ2a), a = 1, . . . , d = D/2.

(7)

For the fermionic operators, one easily verifies the relations{
ψa,ψ

†
b

} = δab, {ψa,ψb} = 0,
{
ψ †

a, ψ
†
b

} = 0. (8)

Thus, ψ
†
a (ψa) acts as a creation (annihilation) operator, and we can employ the usual

(fermionic) Fock space construction, starting with the vacuum state |
〉,
ψa |
〉 = 0, |a1 . . . am〉 ≡ ψ †

a1
. . . ψ †

am
|
〉, 1 � m � d. (9)

Now we choose the following Cartan–Weyl basis for the so(D)-algebra: Cartan operators Ha

and raising operators E1, . . . , Ed (corresponding to simple positive roots) read (no sum!)

Ha = za∂a − z̄a ∂̄a + 1
2

(
ψ †

aψa − ψaψ
†
a

)
, a = 1, . . . , d,

Ea = −i
(
za∂a+1 − z̄a+1∂̄a + ψ †

aψa+1
)
, a = 1, . . . , d − 1,

Ed = −i
(
zd−1∂̄d − zd ∂̄d−1 + ψ

†
d−1ψ

†
d

)
.

(10)

Since the operators in (10) act trivially on the radial part of spinor wavefunctions, we consider
the angular part only. We can easily determine the highest weight states with respect to the
orbital part; they are given by

φ� = z�
1. (11)

These states are annihilated by all simple positive roots, and the eigenvalues with respect to
the Cartans read (H1, . . . , Hd) = (�, 0, . . . , 0). Similarly, for the ‘fermionic’ part there are
only two highest weight states given by

χ+ = ψ
†
1 · · · ψ †

d |
〉 and χ− = ψ
†
1 · · · ψ †

d−1 |
〉. (12)

The corresponding eigenvalues of the Cartan operators read
(

1
2 , . . . , 1

2 ,± 1
2

)
, respectively.

Next, we determine the highest weight states of ‘fermionic’ and ‘bosonic’ degrees of freedom
together. Two highest weight states can be constructed easily; they are just given by the tensor
products

φ+
� = φ�χ

+ and φ−
� = φ�χ

−, (13)

with eigenvalues of the Cartan operators
(
� + 1

2 , 1
2 , . . . , 1

2 ,± 1
2

)
, respectively. Furthermore, we

observe that the operator S in (4),

S = (
ψ †

a z̄a + ψaza

)/
r = S†, S2 = 11, (14)
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commutes with the total angular momentum and therefore maps highest weight states into
highest weight states. We obtain two additional highest weight states,

φ̃+
� = Sφ+

� and φ̃−
� = Sφ−

� , (15)

with eigenvalues
(
� + 1

2 , 1
2 , . . . , 1

2 ,± 1
2

)
. Equations (13) and (15) contain, in fact, all highest

weight states, which is seen as follows. The tensor product of the bosonic representation
(�, 0, . . . , 0) with the fermionic representation

(
1
2 , . . . , 1

2

)
is given by

(�, 0, . . . , 0) ⊗ (
1
2 , . . . , 1

2

) = (
� + 1

2 , 1
2 , . . . , 1

2

) ⊕ (
� − 1

2 , 1
2 , . . . , 1

2 ,− 1
2

)
φ� χ+ φ+

� φ̃−
�−1

(16)

and the tensor product of the bosonic representation (�, 0, . . . , 0) with the fermionic
representation

(
1
2 , . . . , 1

2 ,− 1
2

)
is given by

(�, 0, . . . , 0) ⊗ (
1
2 , . . . , 1

2 ,− 1
2

) = (
� + 1

2 , 1
2 , . . . , 1

2 ,− 1
2

) ⊕ (
� − 1

2 , 1
2 , . . . , 1

2

)
φ� χ− φ−

� φ̃+
�−1.

(17)

The highest weight states appear at the correct places, which are determined by the degree
of the polynomials in xA and the chirality of the states. By counting the dimensions of the
representations and comparing it with Weyl’s dimension formula for the Dd groups [25], we
see that there are no further representations in the tensor product rule.

Next, we investigate the chiral-bag boundary conditions. As stated above, �− commutes
with JAB , and we can diagonalize �− in our basis of highest weight states. We may express
γ∗ with the help of (7) by

γ∗ =
d∏

a=1

(
ψ †

aψa − ψaψ
†
a

)
, such that γ∗ |
〉 = (−)d |
〉. (18)

Since φ+
� and φ̃+

� (and likewise φ−
� and φ̃−

� ) have the same eigenvalues with respect to the
Cartan operators Ha , we allow for linear combinations of them,

�±
� = f ±

� (r)φ±
� + g±

� (r)φ̃±
� . (19)

Imposing the boundary condition �−�±
� = 0 leads to the following equations for the radial

functions:

f ±
� (R) ∓ i e±θg±

� (R) = 0. (20)

Finally, using complex coordinates, we solve for the spectrum of the Dirac operator,

i∂/�±
� = λ�±

� , i∂/ = 2iψa∂̄a + 2iψ †
a∂a. (21)

From the eigenvalue equation of the Dirac operator (21), one obtains a system of coupled
first-order differential equations. Using ν = � + d − 1/2, the system reads

i
(
f ±

�

)′ = λg±
� , i

(
g±

�

)′ = λf ±
� − 2i

r
νg±

� .

It can be easily solved, and the solutions are given by

f ±
� (r) = r1/2−ν(c1Jν−1/2(|λ|r) + c2Nν−1/2(|λ|r)), (22)

g±
� (r) = −i sign(λ)r1/2−ν(c1Jν+1/2(|λ|r) + c2Nν+1/2(|λ|r)). (23)

Finally, keeping only those eigenfunctions that are nonsingular at the origin, imposing the
boundary condition (20) and defining k ≡ |λ|R, we obtain

Jν−1/2(k) − sign(λ) eθJν+1/2(k) = 0 for the + case, (24)
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Jν−1/2(k) + sign(λ) e−θJν+1/2(k) = 0 for the − case. (25)

The degeneracy of the eigenvalues can be determined by Weyl’s dimension formula. For each
� in D = 2d dimensions and for both, (24) and (25), the degeneracy is given by

d�(D) = ds

2

(
D + � − 2

�

)
, (26)

with ds = 2d the dimension of the spinor space.

3. The eta function as an integral for arbitrary D

Our starting point for the evaluation of the spectral asymmetry will be a contour integral
representation of the eta function, which we derive first; for the general strategy see, e.g.,
[14, 23]. In order to clearly distinguish positive and negative eigenvalues, let us write down
equations (24) and (25) for λ > 0 and λ < 0.

For λ > 0 we have

Jν−1/2(k) − eθJν+1/2(k) = 0,

Jν−1/2(k) + e−θJν+1/2(k) = 0, � = 0, . . . ,∞,
(27)

while for λ < 0

Jν−1/2(k) + eθJν+1/2(k) = 0,

Jν−1/2(k) − e−θJν+1/2(k) = 0, � = 0, . . . ,∞.
(28)

Hence, the η-function

η(s, i∂/) =
∑

λ

(sgn λ)|λ|−s

is given by the following contour integral in the complex plane,

η(s, i∂/) =
∞∑

�=0

d�(D)
1

2π i

∫
�

dz z−s d

dz
log

(
Jν−1/2(zR) − eθJν+1/2(zR)

Jν−1/2(zR) + eθJν+1/2(zR)

)
− (θ → −θ),

where the contour � encloses the positive real axis counterclockwise. The notation above
means that we have to subtract the same expression, with θ replaced by −θ .

We deform the path of integration such that we integrate along the imaginary axis. After
using the definition of the modified Bessel functions and the elementary relation [26]

arctan x = 1

2i
ln

1 + ix

1 − ix
,

we find

η(s, i∂/) = 2

π
cos

(πs

2

) ∞∑
�=0

d�(D)

∫ ∞

0
dt t−s d

dt
[arctan Qν(θ, tR) − arctan Qν(−θ, tR)],

where the notation

Qν(θ, x) = eθ Iν+1/2(x)

Iν−1/2(x)

has been used.
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In order to evaluate η(0, i∂/), which is by definition the spectral asymmetry, we will use
in the forthcoming sections the shifted Debye expansion of Bessel functions summarized in
the appendix. We change the variable in the integral according to t = νu

R
. We observe that all

terms combine nicely if [26]

arctan x − arctan y = π

2
− arctan

1 + xy

x − y

is used. With

Pν(θ, x) = 1

2 sinh θ

(
Iν+1/2(x)

Iν−1/2(x)
+

Iν−1/2(x)

Iν+1/2(x)

)
,

we obtain the simple looking result

η(s, i∂/) = − 2

π
Rs cos

(πs

2

) ∞∑
�=0

d�(D)ν−s

∫ ∞

0
du u−s d

du
arctan Pν(θ, uν). (29)

Using the notation

b =
√

1 + u2

u sinh θ
, t = 1√

1 + u2
,

as ν → ∞, equations (A.1) and (A.2) in the appendix show that

Pν(θ, νu) = b(1 + δ)

where

δ = 1

ν

1

2
t3 +

1

ν2

5

8
t4(1 − t2) +

1

ν3
t5

(
1 − 23

8
t2 +

15

8
t4

)
+ O(ν−4).

Using this in

arctan(b[1 + δ]) = arctan b + δ
b

1 + b2
− δ2 b3

1 + b2
+ δ3 b3

3

3b2 − 1

(1 + b2)3
+ O(δ4),

the leading three orders of the ν → ∞ expansion are obtained. Introducing Z = 2 + u2 +
u2 cosh(2θ), where Z−j naturally occurs as a factor multiplying δj , we find explicitly

arctan Pν(θ, νu) = arctan

(√
1 + u2

2 sinh θ

)

+
2u sinh θ

Z

{
1

ν

1

2
t2 +

1

ν2

(
5

8
t3 − 5

8
t5

)
+

1

ν3

(
t4 − 23

8
t6 +

15

8
t8

)}

− 4u sinh θ

Z2

{
1

ν2

1

4
t3 +

1

ν3

(
5

8
t4 − 5

8
t6

)}

+
1

ν3

u sinh θ

Z3

{
t4 − 1

3
t6u2 sinh2 θ

}
+ O

(
1

ν4

)
. (30)

These asymptotic contributions are all we will need for the evaluation of η(0, i∂/) in two and
four dimensions. More general, in D dimensions, D − 1 asymptotic orders would be needed.

Note that using (30) in (29), each order of 1/ν leads to the appearance of zeta functions
of the Barnes type [27–29],

ζB(s, a) =
∞∑

�=0

(
D + � − 2

�

)
(� + a)−s .
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In detail we have
∞∑

�=0

d�(D)ν−s = 1

2
dsζB

(
s,

D − 1

2

)
. (31)

This fact is characteristic for spectral problems on balls.
All resulting u-integrations can be done in terms of hypergeometric functions,∫ ∞

0
du u−s(1 + u2)−α

[
1 +

u2

2(1 + u2)
(cosh(2θ) − 1)

]−β

= �
(
α + s−1

2

)
�

(
1−s

2

)
2�(α)

2F1

(
β,

1 − s

2
;α;−sinh2 θ

)
. (32)

This allows us to express all terms resulting from the asymptotic expansions (30) in the
compact form

Ai,k,l,j (s) = − sds

2j+1π
cos

(πs

2

) �
(
j + k+s−l

2

)
�

(
l−s

2

)
�

(
j + k

2

) ζB

(
s + i; D − 1

2

)

× 2F1

(
j,

l − s

2
; j +

k

2
;−sinh2 θ

)
. (33)

We next use these results to evaluate the asymmetry on balls in two and four dimensions.

4. D = 2: the asymmetry on a disk

In two dimensions the degeneracy is d�(2) = 1 and we have ν = � + 1/2, such that from (29)
we get

η(s, i∂/) = − 2

π
Rs cos

(πs

2

) ∞∑
�=0

ν−s

∫ ∞

0
du u−s d

du
arctan Pν(θ, uν). (34)

Here, the relevant Barnes boundary zeta function reduces to a Hurwitz zeta function, i.e.,
ζB

(
s, 1

2

) = ζH (s, 1/2). In this case, in order to obtain the analytic extension to s = 0,
it is enough to consider only two terms in the Debye expansion. In order to see this we
integrate (34) by parts and have for 0 < �(s) < 1

η(s, i∂/) = −2s

π
Rs cos

(πs

2

) ∞∑
�=0

ν−s

∫ ∞

0
du u−s−1 arctan Pν(θ, uν).

The s-factor in the numerator can be cancelled by singularities coming from divergencies in
the integral (this is the case for the ν-independent term in the Debye expansion) or from the
pole in the successive Hurwitz zeta functions (this is the case for the term of order ν−1 in the
Debye expansion).

The leading two asymptotic terms contributing to η(0, i∂/) are

η(s, i∂/) = sinh θ(A0,1,1,1(s) + A1,2,1,1(s) + · · ·).
Because ζH (0, 1/2) = 0 we have A0,1,1,1(0) = 0 and this shows

η(0, i∂/) = −1

4
sinh θ 2F1

(
1,

1

2
, 2,−sinh2 θ

)

= −1

2

sinh θ

1 + cosh θ
= −1

2
tanh

(
θ

2

)
. (35)

Note that the result is invariant under the transformation θ → θ + 2π i.
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The case D = 2 was treated before, in [23], as an example of a non-product manifold.
Unfortunately, the term coming from the pole in the Hurwitz zeta function was missing in that
calculation, which led to erroneous conclusions about relations between results on product
and non-product manifolds stated in the same reference.

5. Asymmetry in D = 4

In the four-dimensional case we have ν = � + 3/2 and the degeneracy reads d�(4) = ν2 − 1/4.
Our immediate concern is the evaluation of the η-function at the value s = 0 in dimension
D = 4. Arguing as below (34), terms up to the order 1/ν3 need to be considered. Further
simplifications occur since (see, e.g., [14, 30])

ζB

(
0; 3

2

)
= 0, Res ζB

(
s = 2; 3

2

)
= 0.

As a consequence we find that

A0,k,l,j (0) = 0, A2,k,l,j (0) = 0

for all relevant values of k, l, j . Then, the contributions to the eta invariant read

η(0) =
∑
i,k,l,j

Ci,k,l,jAi,k,l,j (0) (36)

where i = 1, 3 contributes and the non-vanishing numerical multipliers are found from (30);
in detail, the results are

C1,2,1,1 = sinh θ C3,4,1,1 = 2 sinh θ C3,6,1,1 = − 23
4 sinh θ C3,8,1,1 = 15

4 sinh θ

C3,4,1,2 = − 5
2 sinh θ C3,6,1,2 = 5

2 sinh θ C3,4,1,3 = sinh θ C3,6,3,3 = − 1
3 sinh3 θ.

For all relevant values of i, k, l, j , the hypergeometric functions turn out to be hyperbolic
functions. Using (see, e.g., [14, 30])

Res ζB
(
s = 3; 3

2

) = 1
2 , Res ζB

(
s = 1; 3

2

) = − 1
8 ,

and adding up all contributions, we find

η(0, i∂/) = 1

6144

tanh
(

θ
2

)
cosh6

(
θ
2

) (259 + 344 cosh θ + 161 cosh(2θ) + 16 cosh(3θ)). (37)

6. Determination of the leading coefficients in heat traces

In this section, we use the special case of the ball just presented, together with similar results for
the cylinder and functorial techniques, to find some results about the coefficients a

η
n(F, P,�−)

in the expansion [12, 13, 31]

Tr(FP e−tP 2
) ∼

∞∑
n=0

aη
n(F, P,�−)t

n−D−1
2 ,

with P an operator of Dirac type decomposed as

P = iγj∇j + ψ.

Here ∇ denotes a connection on a vector bundle V over a compact D-dimensional Riemannian
manifold M with smooth boundary ∂M such that ∇γ = 0; furthermore ψ and F are smooth
endomorphisms of V .
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The functorial techniques will consist of conformal transformations and of relations
between the above expansion and the well-known expansion for the heat-kernel [12, 13, 31]

Tr
(
F e−tP 2) ∼

∞∑
n=0

aζ
n(F, P 2,�−)t (n−D)/2.

To write down the geometrical structure of the coefficients a
η
n let Lab be the second fundamental

form, a, b = 1, . . . , D −1, and let ;D denote the derivative with respect to the exterior normal.

Lemma 6.1. Let f be scalar, and F = f · IdV . There exist universal constants di(θ,D) such
that

a
η

0 (F, P,�−) = 0,

a
η

1 (F, P,�−) = (4π)−D/2

{
(1 − D)

∫
M

f Tr(ψ) dx +
∫

∂M

d1(θ,D)f Tr(Id) dy

}
,

a
η

2 (F, P,�−) = (4π)−(D−1)/2
∫

∂M

Tr(d2(θ,D)Laaf + d3(θ,D)f ψγ∗(iS)

+ d4(θ,D)f ψ(iS) + d5(θ,D)f ψγ∗ + d6(θ,D)f ψ + d7(θ,D)f;DIdV ) dy

Proof. This follows from the theory of invariants as described e.g. in [13]. �

We have used the invariant iS, with S the projection of γ A onto the outward unit normal
vector, such that the numerical multipliers remain real as is commonly chosen. We next
determine the universal multipliers di(θ,D), i = 1, . . . , 7. We first exploit known special
cases.

Lemma 6.2. We have

d1(θ,D) = 1

2
(D − 1) sinh θ 2F1

(
1, 1 − D

2
; 3

2
;−sinh2 θ

)
,

d2(θ,D) = − 1

16
(D − 2) sinh θ 2F1

(
1,

3 − D

2
; 2;−sinh2 θ

)
.

Proof. This follows from the calculations on the ball with f = 1 and ψ = 0, which is the
situation considered in the previous sections. For convenience, we also put the radius of the
ball R = 1. We will use the relation [13, 31]

aη
n(1, P ,�−) = 1

2
�

(
D − n + 1

2

)
Res η(D − n, P ) (38)

and, therefore, we can use the previously analysed η-function η(s, i∂/).
Instead of looking at s = 0, the information relevant for lemma 6.1 is found by considering

η(s, i∂/) in equation (29) about the points s = D − 1 and s = D − 2. Arguing as before, we
need to consider the leading two asymptotic contributions in (30) only and find, modulo terms
that do not contribute to the relevant residues

η(s, i∂/) ∼ − 1√
π

ds

�
(
1 + s

2

)
�

(
1+s

2

) sinh θ 2F1

(
1,

1 − s

2
; 3

2
;−sinh2 θ

)
ζB

(
s; D − 1

2

)

+
1

8
dss(s + 1) sinh θ 2F1

(
1,

1 − s

2
; 2;−sinh2 θ

)
ζB

(
s + 1; D − 1

2

)
.



9582 A Kirchberg et al

The residues of η(s, i∂/) at s = (D −1) and s = (D −2) follow immediately from the residues
of the Barnes zeta function, see e.g. [32],

Res ζB

(
D − 1; D − 1

2

)
= 1

(D − 2)!
= 1

�(D − 1)
,

Res ζB

(
D − 2; D − 1

2

)
= 0.

Using equation (38), and the fact that the volume of the (D − 1)-dimensional unit sphere is
2πD/2/�(D/2), we conclude the proof of lemma 6.2. �

We next apply conformal variations of Dirac-type operators.

Lemma 6.3. We have

d7(θ,D) = D − 1

D − 2
d2(θ,D).

Proof. Let f be a smooth function with f |∂M = 0. Define gµν(ε) := e2εf gµν(0) and
P(ε) := e−εf P . Let ∇ be the standard spinor connection. We expand P = iγ ν∇∂ν

+ ψ with
respect to a local coordinate system x = (x1, . . . , xD) and use the metric to lower indices and
define γν . Then the connection transforms like

∇(ε)∂µ
:= ∇∂µ

+ 1
2ε(−f;νγ νγµ + f;µ).

Furthermore,

ψ(ε) = e−εf
(
ψ − 1

2ε(D − 1)f;ν(iγ ν)
)
.

Note that the boundary condition remains unchanged under conformal variation. Proceeding
as for the heat kernel coefficients, one shows that the eta invariant coefficients satisfy the
equation [33]

d

dε

∣∣∣∣
ε=0

aη
n(1, P (ε),�−) = (D − n)aη

n(f, P,�−). (39)

To study the numerical multiplier d7(θ,D) we need the variation of

d

dε

∣∣∣∣
ε=0

Laa = −f Laa + (D − 1)f;D.

Applying equation (39) shows the assertion. �

In order to determine the numerical multipliers d3(θ,D), d4(θ,D), d5(θ,D) and d6(θ,D)

we relate the eta invariant to the zeta invariant. We will then evaluate the zeta invariant on the
D-dimensional cylinder for the case of an arbitrary endomorphism valued F.

The result we are going to use is the following:

Lemma 6.4. Let F ∈ C∞(End(V )) and let P(ε) := P + εF . We then have

∂εa
η
n(1, P (ε),�−) = (n − D)a

ζ

n−1(F, P (ε),�−).

Proof. The proof is insensitive to the boundary conditions imposed and parallels the proof in
[33, 34]. �

Remark 6.5. The very useful property of this result is that the a
η
n coefficient for the eta

invariant is related to the coefficient a
ζ

n−1 for the zeta invariant, which will have a significantly
simpler structure.

In order to apply lemma 6.4 to the coefficient aη

2 we need the general form of the a
ζ

1 coefficient.
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Lemma 6.6. Let F ∈ C∞(End(V )). There exist universal constants fi(θ,D) such that

a
ζ

1 (F, P 2,�−) = (4π)−(D−1)/2

×
∫

∂M

Tr{f3(θ,D)Fγ∗(iS) + f4(θ,D)F (iS) + f5(θ,D)Fγ∗ + f6(θ,D)F }.

Proof. This follows immediately from the theory of invariants taking into account that F is in
general a matrix-valued endomorphism. �

Remark 6.7. Lemma 6.4 relates the universal constant dj (θ,D) with fj (θ,D), j = 3, . . . , 6.
In detail we have

dj (θ,D) = −(D − 2)fj (θ,D), j = 3, . . . , 6.

Finding the fj (θ,D) is easier, because they follow from the case with ψ = 0. They can be
evaluated from the cylinder where the heat kernel is known locally [12] and its coefficients
can be evaluated for an arbitrary endomorphism F.

In order to summarize the results of [12] we need to introduce the relevant notation. Let
M = R+ × N be an even-dimensional cylinder equipped with the metric ds2 = dx2

D + ds2
N ,

where xD is the coordinate in R+ and plays the role of the normal coordinate, and ds2
N is the

metric of the closed boundary N. The coordinates on N are denoted by y = (y1, y2, . . . , yD−1).
To write down the heat kernel on M for P 2 = (iγj∇j )

2 with boundary condition �−, we call
φω(y) the eigenspinors of the operator B = γ∗Sγa∇a , corresponding to the eigenvalue ω,
normalized so that∑

ω

φ�
ω(y)φω(y ′) = δD−1(y − y ′),

with δD−1 the Dirac delta function, and∫
N

dy φ�
ω(y)φω(y) = 1.

Finally we need x = (y, xD), ξ = xD − x ′
D, η = xD + x ′

D, uω(η, t) = η√
4t

+
√

tω tanh θ , and
the complementary error function

erfc(x) = 2√
π

∫ ∞

x

dξ e−ξ 2
.

We then have the result.

Lemma 6.8. From the calculation on the cylinder M = R+ × N we obtain the following
values for the multipliers fi(θ,D), i = 3, 4, 5, 6:

f3(θ,D) = 1
4 coshD−2 θ, f4(θ,D) = 0,

f5(θ,D) = 1
4 coshD−2 θ sinh θ, f6(θ,D) = 1

4 (coshD−1 θ − 1).

Proof. In [12] we have shown that the local heat-kernel on the cylinder reads

K(x, x ′; t) = 1√
4πt

∑
ω

φ�
ω(y ′)φω(y) e−ω2t

{(
e

−ξ2

4t − e
−η2

4t

)
1

+
2�+�

�
+

cosh2(θ)

[
1 −

√
(πt)ω tanh θ euω(η,t)2

erfc(uω(η, t))
]

e
−η2

4t

}
, (40)

with �+ = (1/2)(1+ieθγ∗γ∗S). (Note that [12] and the present article use different conventions.
Here we use the exterior normal contrary to the interior normal there. Furthermore, the γ∗ here
is minus γ̃ there. As a result, in the solution formula from [12] we have to replace θ by −θ in
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order to find a solution for the problem considered here.) The first term is the heat-kernel of
the manifold R × N , a manifold that has no boundary. Therefore we do not consider this term
further as it provides no relevant information for lemma 6.1.

It is natural to introduce the heat kernel KB(y, y ′; t) of the operator B2,

KB(y, y ′; t) =
∑

ω

φ∗
ω(y ′)φω(y) e−ω2t ;

furthermore, to make the single steps easier to follow we use the splitting

K1(x, x ′; t) = − 1√
4πt

∑
ω

φ�
ω(y ′)φω(y) e−ω2te

−η2

4t ,

K2(x, x ′; t) = 1√
4πt

∑
ω

φ�
ω(y ′)φω(y) e−ω2t 2�+�

�
+

cosh2(θ)

× [
1 −

√
(πt)ω tanh θ euω(η,t)2

erfc(uω(η, t))
]

e
−η2

4t .

We are interested in the trace TrL2(FK(x, x; t)). We assume F = F(y) to be independent
of the normal variable xD , such that the xD-integration of the L2-trace can be done without
greater complication.

First, it is straightforward to see that∫ ∞

0
dxD F(y)K(x, x; t) = −1

4
F(y)KB(y, y; t). (41)

The representation for K2(x, x; t) can be conveniently rewritten as to perform the xD-
integration. We have

K2(x, x; t) = − 1

2 cosh2 θ

∑
ω

φ∗
ω(y)φω(y) e−ω2t�+�

∗
+

× ∂

∂xD

[
e− x2

D
t

+u2
ω(2xD,t) erfc(uω(2xD, t))

]
,

where we used the relation

−1

2

∂

∂xD

[
e−x2

D/t+u2
ω(2xD,t) erfc(uω(2xD, t))

]

= e−x2
D/t

[
1√
πt

− ω tanh θ eu2
ω(2xD,t) erfc(uω(2xD, t))

]
.

Therefore,∫ ∞

0
dxDFK2(x, x; t) = 1

2 cosh2 θ

∑
ω

φ∗
ω(y)φω(y) e−ω2t�+�

∗
+ etω2 tanh2 θ erfc(

√
tω tanh θ).

We need to collect the contributions to the coefficient a
ζ

1 (F, P 2,�−). The first term,
equation (41), can be described by the heat-kernel of the boundary and we find the relevant
contribution to be −(1/4)a

ζ

0 (F, B2). In order to find the contribution of K2(x, x; t) is
considerably harder; we found it most convenient to relate the heat-kernel coefficients to
the zeta function,

ζ(s;F,P 2,�−) = 1

�(s)

∫ ∞

0
dt t s−1 TrL2

(
F e−tP 2)

,

in the standard fashion

Res ζ(z;F,P 2,�−) = a
ζ

D−2z(F, P 2,�−)

�(z)
, (42)

for z = D/2, (D − 1)/2, . . . , 1/2,−(2n + 1)/2, n ∈ N.
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For K2(x, x; t) the related zeta function contribution is

ζ2(s, F, P 2,�−) = 1

2 cosh2 θ�(s)

× Tr

{
F

∑
ω

φ∗
ω(y)φω(y)�+�

∗
+

∫ ∞

0
dt t s−1 e− ω2 t

cosh2 θ (1 + erf(−√
tω tanh θ))

}
.

The integral can be performed in terms of a hypergeometric function to read

ζ2(s, F, P 2,�−) = 1

2 cosh2 θ�(s)
Tr

{
F

∑
ω

φ∗
ω(y)φω(y)�+�

∗
+

× cosh2s θ

|ω|2s

[
�(s)− 2√

π
�

(
s +

1

2

)
sinh θsgn(ω) 2F1

(
1

2
, s +

1

2
; 3

2
;−sinh2 θ

)]}
.

In terms of the boundary spectral functions this is

ζ2(s;F,P 2,�−) = cosh2s−2 θ

2�(s)

{
�(s)ζ(s;�+�

∗
+F,B2)

− 2√
π

�

(
s +

1

2

)
sinh θ 2F1

(
1

2
, s +

1

2
; 3

2
;− sinh2 θ

)
η(2s;�+�

∗
+F,B)

}
.

(43)

In order to find the heat-kernel coefficient a
ζ

1 , we use the relation

Res ζ

(
D − 1

2
;F,P 2,�−

)
= a

ζ

1 (F, P 2,�−)

�
(

D−1
2

) .

The eta invariant in (43) does not contribute as η(D − 1;�+�
∗
+F,B) = 0. Therefore,

Res ζ2

(
D − 1

2
;F,P 2,�−

)
= 1

2
coshD−3 θ

a
ζ

0 (�+�
∗
+F,B2)

�
(

D−1
2

)
and the contribution to the heat-kernel coefficient a

ζ

1 (F, P 2,�−) is

1

2
coshD−3 θ(4π)−

D−1
2

∫
N

dy Tr(�+�
∗
+F).

To compare it with the form given in lemma 6.6 we use

�+�
∗
+ = 1

2 cosh θ(cosh θ + γ∗ sinh θ + γ∗(iS)),

providing the relevant heat-kernel contribution in the form

1

4
coshD−2 θ(4π)−

D−1
2

∫
N

dy Tr(cosh θF + sinh θγ∗F + γ∗(iS)F ).

Adding the contribution from K1(x, x; t) shows the result. �

7. Summary of the results

In this paper, we have presented some results concerning the asymmetry of the Dirac operator
with local chiral bag boundary conditions.

Section 2 contains a new derivation, based on group theory, of the known spectrum [16, 24]
of the free Euclidean Dirac operator, under chiral bag boundary conditions, in D dimensions.
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Sections 3–5 were devoted to the study of the spectral asymmetry η(0) in the particular
geometry of a ball, both in two and four dimensions. On the disk, we found

η(0, i∂/) = −1

2
tanh

(
θ

2

)
while in four dimensions the result reads

η(0, i∂/) = 1

6144

tanh
(

θ
2

)
cosh6

(
θ
2

) (259 + 344 cosh θ + 161 cosh(2θ) + 16 cosh(3θ)). (44)

Section 6 deals with the calculation of the boundary contributions to the coefficients
a

η
n(F, P,�−) in the asymptotic expansion of the smeared asymmetry kernel for general

Riemannian manifolds

Tr
(
FP e−tP 2) ∼

∞∑
n=0

aη
n(F, P,�−)t

n−D−1
2 ,

where P is the Dirac operator, with its domain determined through chiral bag boundary
conditions, and F is a smearing function. The calculations were partly performed by making
use of the results in sections 4 and 5. In addition, previous calculations for the cylinder
[12, 23] and functorial techniques, i.e., conformal transformations and relations between the
asymptotics of the asymmetry kernel and the expansion for the heat kernel, were employed.

As shown in lemma 6.1, from the theory of invariants [13] one infers

a
η

0 (F, P,�−) = 0,

a
η

1 (F, P,�−) = (4π)−D/2

{
(1 − D)

∫
M

f Tr(ψ) dx +
∫

∂M

d1(θ,D)f Tr(Id) dy

}
,

a
η

2 (F, P,�−) = (4π)−(D−1)/2
∫

∂M

Tr(d2(θ,D)Laaf + d3(θ,D)f ψγ∗(iS)

+ d4(θ,D)f ψ(iS) + d5(θ,D)f ψγ∗ + d6(θ,D)f ψ + d7(θ,D)f;DIdV ) dy.

The seven boundary coefficients (d1 to d7) relevant to this order in the asymptotic expansion
are found in lemmas 6.2–6.8. They take the form

d1(θ,D) = 1

2
(D − 1) sinh θ 2F1

(
1, 1 − D

2
; 3

2
;−sinh2 θ

)
,

d2(θ,D) = − 1

16
(D − 2) sinh θ 2F1

(
1,

3 − D

2
; 2;−sinh2 θ

)
,

d3(θ,D) = −1

4
(D − 2) coshD−2 θ,

d4(θ,D) = 0, (45)

d5(θ,D) = −1

4
(D − 2) coshD−2 θ sinh θ,

d6(θ,D) = −1

4
(D − 2)(coshD−1 θ − 1),

d7(θ,D) = − 1

16
(D − 1) sinh θ 2F1

(
1,

3 − D

2
; 2;−sinh2 θ

)
.
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Appendix. Debye expansion of Bessel functions

Consider the ordinary differential equation(
∂2
z + u∂z + v

)
φ(z) = 0.

For the solution we use the ansatz

φ(z) = exp

{∫
dt p(t)

}
ψ(z).

With the choice p = −u/2, the resulting differential equation for ψ is

ψ ′′ + qψ = 0, where q = v − u′

2
− u2

4
.

It is more convenient to consider

∂z ln φ = p + S, where S = ∂z ln ψ.

Contact between S and the solution φ is made by observing that

φ(z) = const exp

{∫
dz p(z)

}
exp

{∫
dz S(z)

}
.

The differential equation for S turns out to be

S ′ = −q − S2.

We assume that the differential equation contains a parameter ν and that we are interested in
the large-ν asymptotic of S. The particular choice of the asymptotic expansions below is the
relevant case for the consideration of the asymptotic of Bessel functions. We assume that as
ν → ∞, the function q has the asymptotic expansion

q =
∞∑

i=−2

ν−iqi .

In that case, the function S can be seen to have the asymptotic form

S =
∞∑

i=−1

ν−iSi .

Using these asymptotic forms in the differential equation for S, the asymptotic orders are seen
to be given by

S−1 = ±√−q−2,

S0 = − q−1

2S−1
− 1

2
∂z ln S−1,

Si+1 = −qi + S ′
i +

∑i
j=0 SjSi−j

2S−1
.

Let us apply these formulae to the differential equation for the Bessel functions Iν+α(νz) and
Kν+α(νz). The relevant differential equation reads

φ′′ +
1

z
φ′ −

{
ν2

(
1 +

1

z2

)
+ λ

2α

z2
+

α2

z2

}
φ = 0.
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Therefore, for the given example, we find

p = − 1

2z
, q0 = 1

z2

(
1

4
− α2

)
, q−1 = −2α

z2
, q−2 = −

(
1 +

1

z2

)
.

Linearly independent solutions of the differential equation are proportional to Iν+α(νz) and
Kν+α(νz). From the known behaviour of these functions for large arguments [26], we can
conclude that S−1 = +

√−q−2 corresponds to Iν+α , whereas S−1 = −√−q−2 corresponds to
Kν+α . For the present occasion we need the asymptotics for Iν+α and continue with this case
only. Using the asymptotic orders in S, the solution has the asymptotic behaviour

φ(z) ∼ const exp

{
ν

∫
dz S−1

}
exp

{∫
dz

(
S0 − 1

2z

)}
exp

{ ∞∑
i=1

ν−i

∫
dz Si

}
.

The constant prefactor is determined from the known Debye expansion of the Bessel function
Iν(νz) and it reads

const = 1√
2πν

.

Using the explicit form of q−2 and q−1 for the present example, one obtains therefore the result

Iν+α(νz) ∼ 1√
2πν

eνβ t1/2

(
1 − t

1 + t

)α/2

exp

{ ∞∑
i=1

ν−iCi(z, α)

}
, (A.1)

where t = 1/
√

1 + z2, β = √
1 + z2 + ln

[
z
/(

1 +
√

1 + z2
)]

,

Ci(z, α) =
∫

dz Si,

and with the understanding that for α = 0 the known answers for Iν(νz) are reproduced [35].
The list of the first Ci(z, α) obtained is

C1(z, α) = t

8
− α2t

2
− αt2

2
− 5t3

24
,

C2(z, α) = t2

16
− α2t2

4
− 13αt3

24
+

α3t3

6
− 3t4

8
+

α2t4

2
+

5αt5

8
+

5t6

16
,

C3(z, α) = 25t3

384
− 13α2t3

48
+

α4t3

24
− 7αt4

8
+

α3t4

2
− 531t5

640
+

7α2t5

4
− α4t5

8

+
11αt6

4
− 2α3t6

3
+

221t7

128
− 25α2t7

16
− 15αt8

8
− 1105t9

1152
. (A.2)

Higher orders can be produced as needed.
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